![]() |
Image source: Google image search |
virtual work; kinematics and dynamics of particles and of rigid bodies in plane
motion; impulse and momentum (linear and angular) and energy formulations,
collisions.
Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr’s
circle for plane stress and plane strain; thin cylinders; shear force and bending
moment diagrams; bending and shear stresses; deflection of beams; torsion of
circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain
gauges and rosettes; testing of materials with universal testing machine; testing of
hardness and impact strength.
Theory of Machines: Displacement, velocity and acceleration analysis of plane
mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels
and governors; balancing of reciprocating and rotating masses; gyroscope.
Vibrations: Free and forced vibration of single degree of freedom systems, effect of
damping; vibration isolation; resonance; critical speeds of shafts.
Machine Design: Design for static and dynamic loading; failure theories; fatigue
strength and the S-N diagram; principles of the design of machine elements such as
bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings,
brakes and clutches, springs.
0 comments:
Post a Comment